VisionFive2 Linux kernel

StarFive Tech Linux Kernel for VisionFive (JH7110) boards (mirror)

More than 9999 Commits   33 Branches   57 Tags
author: Mike Kravetz <mike.kravetz@oracle.com> 2018-12-28 00:39:42 -0800 committer: Linus Torvalds <torvalds@linux-foundation.org> 2018-12-28 12:11:52 -0800 commit: c86aa7bbfd5568ba8a82d3635d8f7b8a8e06fe54 parent: b43a9990055958e70347c56f90ea2ae32c67334c
Commit Summary:
hugetlbfs: Use i_mmap_rwsem to fix page fault/truncate race
Diffstat:
1 file changed, 28 insertions, 32 deletions
diff --git a/fs/hugetlbfs/inode.c b/fs/hugetlbfs/inode.c
index 32920a10100e..a2fcea5f8225 100644
--- a/fs/hugetlbfs/inode.c
+++ b/fs/hugetlbfs/inode.c
@@ -383,17 +383,16 @@ hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
  * truncation is indicated by end of range being LLONG_MAX
  *	In this case, we first scan the range and release found pages.
  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
- *	maps and global counts.  Page faults can not race with truncation
- *	in this routine.  hugetlb_no_page() prevents page faults in the
- *	truncated range.  It checks i_size before allocation, and again after
- *	with the page table lock for the page held.  The same lock must be
- *	acquired to unmap a page.
+ *	maps and global counts.
  * hole punch is indicated if end is not LLONG_MAX
  *	In the hole punch case we scan the range and release found pages.
  *	Only when releasing a page is the associated region/reserv map
  *	deleted.  The region/reserv map for ranges without associated
- *	pages are not modified.  Page faults can race with hole punch.
- *	This is indicated if we find a mapped page.
+ *	pages are not modified.
+ *
+ * Callers of this routine must hold the i_mmap_rwsem in write mode to prevent
+ * races with page faults.
+ *
  * Note: If the passed end of range value is beyond the end of file, but
  * not LLONG_MAX this routine still performs a hole punch operation.
  */
@@ -423,32 +422,14 @@ static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 
 		for (i = 0; i < pagevec_count(&pvec); ++i) {
 			struct page *page = pvec.pages[i];
-			u32 hash;
 
 			index = page->index;
-			hash = hugetlb_fault_mutex_hash(h, current->mm,
-							&pseudo_vma,
-							mapping, index, 0);
-			mutex_lock(&hugetlb_fault_mutex_table[hash]);
-
 			/*
-			 * If page is mapped, it was faulted in after being
-			 * unmapped in caller.  Unmap (again) now after taking
-			 * the fault mutex.  The mutex will prevent faults
-			 * until we finish removing the page.
-			 *
-			 * This race can only happen in the hole punch case.
-			 * Getting here in a truncate operation is a bug.
+			 * A mapped page is impossible as callers should unmap
+			 * all references before calling.  And, i_mmap_rwsem
+			 * prevents the creation of additional mappings.
 			 */
-			if (unlikely(page_mapped(page))) {
-				BUG_ON(truncate_op);
-
-				i_mmap_lock_write(mapping);
-				hugetlb_vmdelete_list(&mapping->i_mmap,
-					index * pages_per_huge_page(h),
-					(index + 1) * pages_per_huge_page(h));
-				i_mmap_unlock_write(mapping);
-			}
+			VM_BUG_ON(page_mapped(page));
 
 			lock_page(page);
 			/*
@@ -470,7 +451,6 @@ static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 			}
 
 			unlock_page(page);
-			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 		}
 		huge_pagevec_release(&pvec);
 		cond_resched();
@@ -482,9 +462,20 @@ static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 
 static void hugetlbfs_evict_inode(struct inode *inode)
 {
+	struct address_space *mapping = inode->i_mapping;
 	struct resv_map *resv_map;
 
+	/*
+	 * The vfs layer guarantees that there are no other users of this
+	 * inode.  Therefore, it would be safe to call remove_inode_hugepages
+	 * without holding i_mmap_rwsem.  We acquire and hold here to be
+	 * consistent with other callers.  Since there will be no contention
+	 * on the semaphore, overhead is negligible.
+	 */
+	i_mmap_lock_write(mapping);
 	remove_inode_hugepages(inode, 0, LLONG_MAX);
+	i_mmap_unlock_write(mapping);
+
 	resv_map = (struct resv_map *)inode->i_mapping->private_data;
 	/* root inode doesn't have the resv_map, so we should check it */
 	if (resv_map)
@@ -505,8 +496,8 @@ static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
 	i_mmap_lock_write(mapping);
 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
-	i_mmap_unlock_write(mapping);
 	remove_inode_hugepages(inode, offset, LLONG_MAX);
+	i_mmap_unlock_write(mapping);
 	return 0;
 }
 
@@ -540,8 +531,8 @@ static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 			hugetlb_vmdelete_list(&mapping->i_mmap,
 						hole_start >> PAGE_SHIFT,
 						hole_end  >> PAGE_SHIFT);
-		i_mmap_unlock_write(mapping);
 		remove_inode_hugepages(inode, hole_start, hole_end);
+		i_mmap_unlock_write(mapping);
 		inode_unlock(inode);
 	}
 
@@ -624,7 +615,11 @@ static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
 		/* addr is the offset within the file (zero based) */
 		addr = index * hpage_size;
 
-		/* mutex taken here, fault path and hole punch */
+		/*
+		 * fault mutex taken here, protects against fault path
+		 * and hole punch.  inode_lock previously taken protects
+		 * against truncation.
+		 */
 		hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
 						index, addr);
 		mutex_lock(&hugetlb_fault_mutex_table[hash]);