VisionFive2 Linux kernel

StarFive Tech Linux Kernel for VisionFive (JH7110) boards (mirror)

More than 9999 Commits   33 Branches   55 Tags
author: SeongJae Park <sjpark@amazon.de> 2021-09-07 19:56:44 -0700 committer: Linus Torvalds <torvalds@linux-foundation.org> 2021-09-08 11:50:24 -0700 commit: 3f49584b262cf8f42b25f4c1ad9f5bfd3bdc1bca parent: 1c676e0d9b1a59b98885b24a0e16a81fe4cc8301
Commit Summary:
mm/damon: implement primitives for the virtual memory address spaces
Diffstat:
3 files changed, 585 insertions, 0 deletions
diff --git a/mm/damon/Kconfig b/mm/damon/Kconfig
index d00e99ac1a15..5cbb5db54158 100644
--- a/mm/damon/Kconfig
+++ b/mm/damon/Kconfig
@@ -12,4 +12,12 @@ config DAMON
 	  See https://damonitor.github.io/doc/html/latest-damon/index.html for
 	  more information.
 
+config DAMON_VADDR
+	bool "Data access monitoring primitives for virtual address spaces"
+	depends on DAMON && MMU
+	select PAGE_IDLE_FLAG
+	help
+	  This builds the default data access monitoring primitives for DAMON
+	  that works for virtual address spaces.
+
 endmenu
diff --git a/mm/damon/Makefile b/mm/damon/Makefile
index 4fd2edb4becf..6ebbd08aed67 100644
--- a/mm/damon/Makefile
+++ b/mm/damon/Makefile
@@ -1,3 +1,4 @@
 # SPDX-License-Identifier: GPL-2.0
 
 obj-$(CONFIG_DAMON)		:= core.o
+obj-$(CONFIG_DAMON_VADDR)	+= vaddr.o
diff --git a/mm/damon/vaddr.c b/mm/damon/vaddr.c
new file mode 100644
index 000000000000..897aa8cf96c8
--- /dev/null
+++ b/mm/damon/vaddr.c
@@ -0,0 +1,665 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * DAMON Primitives for Virtual Address Spaces
+ *
+ * Author: SeongJae Park <sjpark@amazon.de>
+ */
+
+#define pr_fmt(fmt) "damon-va: " fmt
+
+#include <linux/damon.h>
+#include <linux/hugetlb.h>
+#include <linux/mm.h>
+#include <linux/mmu_notifier.h>
+#include <linux/highmem.h>
+#include <linux/page_idle.h>
+#include <linux/pagewalk.h>
+#include <linux/random.h>
+#include <linux/sched/mm.h>
+#include <linux/slab.h>
+
+/* Get a random number in [l, r) */
+#define damon_rand(l, r) (l + prandom_u32_max(r - l))
+
+/*
+ * 't->id' should be the pointer to the relevant 'struct pid' having reference
+ * count.  Caller must put the returned task, unless it is NULL.
+ */
+#define damon_get_task_struct(t) \
+	(get_pid_task((struct pid *)t->id, PIDTYPE_PID))
+
+/*
+ * Get the mm_struct of the given target
+ *
+ * Caller _must_ put the mm_struct after use, unless it is NULL.
+ *
+ * Returns the mm_struct of the target on success, NULL on failure
+ */
+static struct mm_struct *damon_get_mm(struct damon_target *t)
+{
+	struct task_struct *task;
+	struct mm_struct *mm;
+
+	task = damon_get_task_struct(t);
+	if (!task)
+		return NULL;
+
+	mm = get_task_mm(task);
+	put_task_struct(task);
+	return mm;
+}
+
+/*
+ * Functions for the initial monitoring target regions construction
+ */
+
+/*
+ * Size-evenly split a region into 'nr_pieces' small regions
+ *
+ * Returns 0 on success, or negative error code otherwise.
+ */
+static int damon_va_evenly_split_region(struct damon_target *t,
+		struct damon_region *r, unsigned int nr_pieces)
+{
+	unsigned long sz_orig, sz_piece, orig_end;
+	struct damon_region *n = NULL, *next;
+	unsigned long start;
+
+	if (!r || !nr_pieces)
+		return -EINVAL;
+
+	orig_end = r->ar.end;
+	sz_orig = r->ar.end - r->ar.start;
+	sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
+
+	if (!sz_piece)
+		return -EINVAL;
+
+	r->ar.end = r->ar.start + sz_piece;
+	next = damon_next_region(r);
+	for (start = r->ar.end; start + sz_piece <= orig_end;
+			start += sz_piece) {
+		n = damon_new_region(start, start + sz_piece);
+		if (!n)
+			return -ENOMEM;
+		damon_insert_region(n, r, next, t);
+		r = n;
+	}
+	/* complement last region for possible rounding error */
+	if (n)
+		n->ar.end = orig_end;
+
+	return 0;
+}
+
+static unsigned long sz_range(struct damon_addr_range *r)
+{
+	return r->end - r->start;
+}
+
+static void swap_ranges(struct damon_addr_range *r1,
+			struct damon_addr_range *r2)
+{
+	struct damon_addr_range tmp;
+
+	tmp = *r1;
+	*r1 = *r2;
+	*r2 = tmp;
+}
+
+/*
+ * Find three regions separated by two biggest unmapped regions
+ *
+ * vma		the head vma of the target address space
+ * regions	an array of three address ranges that results will be saved
+ *
+ * This function receives an address space and finds three regions in it which
+ * separated by the two biggest unmapped regions in the space.  Please refer to
+ * below comments of '__damon_va_init_regions()' function to know why this is
+ * necessary.
+ *
+ * Returns 0 if success, or negative error code otherwise.
+ */
+static int __damon_va_three_regions(struct vm_area_struct *vma,
+				       struct damon_addr_range regions[3])
+{
+	struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0};
+	struct vm_area_struct *last_vma = NULL;
+	unsigned long start = 0;
+	struct rb_root rbroot;
+
+	/* Find two biggest gaps so that first_gap > second_gap > others */
+	for (; vma; vma = vma->vm_next) {
+		if (!last_vma) {
+			start = vma->vm_start;
+			goto next;
+		}
+
+		if (vma->rb_subtree_gap <= sz_range(&second_gap)) {
+			rbroot.rb_node = &vma->vm_rb;
+			vma = rb_entry(rb_last(&rbroot),
+					struct vm_area_struct, vm_rb);
+			goto next;
+		}
+
+		gap.start = last_vma->vm_end;
+		gap.end = vma->vm_start;
+		if (sz_range(&gap) > sz_range(&second_gap)) {
+			swap_ranges(&gap, &second_gap);
+			if (sz_range(&second_gap) > sz_range(&first_gap))
+				swap_ranges(&second_gap, &first_gap);
+		}
+next:
+		last_vma = vma;
+	}
+
+	if (!sz_range(&second_gap) || !sz_range(&first_gap))
+		return -EINVAL;
+
+	/* Sort the two biggest gaps by address */
+	if (first_gap.start > second_gap.start)
+		swap_ranges(&first_gap, &second_gap);
+
+	/* Store the result */
+	regions[0].start = ALIGN(start, DAMON_MIN_REGION);
+	regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
+	regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
+	regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
+	regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
+	regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION);
+
+	return 0;
+}
+
+/*
+ * Get the three regions in the given target (task)
+ *
+ * Returns 0 on success, negative error code otherwise.
+ */
+static int damon_va_three_regions(struct damon_target *t,
+				struct damon_addr_range regions[3])
+{
+	struct mm_struct *mm;
+	int rc;
+
+	mm = damon_get_mm(t);
+	if (!mm)
+		return -EINVAL;
+
+	mmap_read_lock(mm);
+	rc = __damon_va_three_regions(mm->mmap, regions);
+	mmap_read_unlock(mm);
+
+	mmput(mm);
+	return rc;
+}
+
+/*
+ * Initialize the monitoring target regions for the given target (task)
+ *
+ * t	the given target
+ *
+ * Because only a number of small portions of the entire address space
+ * is actually mapped to the memory and accessed, monitoring the unmapped
+ * regions is wasteful.  That said, because we can deal with small noises,
+ * tracking every mapping is not strictly required but could even incur a high
+ * overhead if the mapping frequently changes or the number of mappings is
+ * high.  The adaptive regions adjustment mechanism will further help to deal
+ * with the noise by simply identifying the unmapped areas as a region that
+ * has no access.  Moreover, applying the real mappings that would have many
+ * unmapped areas inside will make the adaptive mechanism quite complex.  That
+ * said, too huge unmapped areas inside the monitoring target should be removed
+ * to not take the time for the adaptive mechanism.
+ *
+ * For the reason, we convert the complex mappings to three distinct regions
+ * that cover every mapped area of the address space.  Also the two gaps
+ * between the three regions are the two biggest unmapped areas in the given
+ * address space.  In detail, this function first identifies the start and the
+ * end of the mappings and the two biggest unmapped areas of the address space.
+ * Then, it constructs the three regions as below:
+ *
+ *     [mappings[0]->start, big_two_unmapped_areas[0]->start)
+ *     [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
+ *     [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
+ *
+ * As usual memory map of processes is as below, the gap between the heap and
+ * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
+ * region and the stack will be two biggest unmapped regions.  Because these
+ * gaps are exceptionally huge areas in usual address space, excluding these
+ * two biggest unmapped regions will be sufficient to make a trade-off.
+ *
+ *   <heap>
+ *   <BIG UNMAPPED REGION 1>
+ *   <uppermost mmap()-ed region>
+ *   (other mmap()-ed regions and small unmapped regions)
+ *   <lowermost mmap()-ed region>
+ *   <BIG UNMAPPED REGION 2>
+ *   <stack>
+ */
+static void __damon_va_init_regions(struct damon_ctx *ctx,
+				     struct damon_target *t)
+{
+	struct damon_region *r;
+	struct damon_addr_range regions[3];
+	unsigned long sz = 0, nr_pieces;
+	int i;
+
+	if (damon_va_three_regions(t, regions)) {
+		pr_err("Failed to get three regions of target %lu\n", t->id);
+		return;
+	}
+
+	for (i = 0; i < 3; i++)
+		sz += regions[i].end - regions[i].start;
+	if (ctx->min_nr_regions)
+		sz /= ctx->min_nr_regions;
+	if (sz < DAMON_MIN_REGION)
+		sz = DAMON_MIN_REGION;
+
+	/* Set the initial three regions of the target */
+	for (i = 0; i < 3; i++) {
+		r = damon_new_region(regions[i].start, regions[i].end);
+		if (!r) {
+			pr_err("%d'th init region creation failed\n", i);
+			return;
+		}
+		damon_add_region(r, t);
+
+		nr_pieces = (regions[i].end - regions[i].start) / sz;
+		damon_va_evenly_split_region(t, r, nr_pieces);
+	}
+}
+
+/* Initialize '->regions_list' of every target (task) */
+void damon_va_init(struct damon_ctx *ctx)
+{
+	struct damon_target *t;
+
+	damon_for_each_target(t, ctx) {
+		/* the user may set the target regions as they want */
+		if (!damon_nr_regions(t))
+			__damon_va_init_regions(ctx, t);
+	}
+}
+
+/*
+ * Functions for the dynamic monitoring target regions update
+ */
+
+/*
+ * Check whether a region is intersecting an address range
+ *
+ * Returns true if it is.
+ */
+static bool damon_intersect(struct damon_region *r, struct damon_addr_range *re)
+{
+	return !(r->ar.end <= re->start || re->end <= r->ar.start);
+}
+
+/*
+ * Update damon regions for the three big regions of the given target
+ *
+ * t		the given target
+ * bregions	the three big regions of the target
+ */
+static void damon_va_apply_three_regions(struct damon_target *t,
+		struct damon_addr_range bregions[3])
+{
+	struct damon_region *r, *next;
+	unsigned int i = 0;
+
+	/* Remove regions which are not in the three big regions now */
+	damon_for_each_region_safe(r, next, t) {
+		for (i = 0; i < 3; i++) {
+			if (damon_intersect(r, &bregions[i]))
+				break;
+		}
+		if (i == 3)
+			damon_destroy_region(r, t);
+	}
+
+	/* Adjust intersecting regions to fit with the three big regions */
+	for (i = 0; i < 3; i++) {
+		struct damon_region *first = NULL, *last;
+		struct damon_region *newr;
+		struct damon_addr_range *br;
+
+		br = &bregions[i];
+		/* Get the first and last regions which intersects with br */
+		damon_for_each_region(r, t) {
+			if (damon_intersect(r, br)) {
+				if (!first)
+					first = r;
+				last = r;
+			}
+			if (r->ar.start >= br->end)
+				break;
+		}
+		if (!first) {
+			/* no damon_region intersects with this big region */
+			newr = damon_new_region(
+					ALIGN_DOWN(br->start,
+						DAMON_MIN_REGION),
+					ALIGN(br->end, DAMON_MIN_REGION));
+			if (!newr)
+				continue;
+			damon_insert_region(newr, damon_prev_region(r), r, t);
+		} else {
+			first->ar.start = ALIGN_DOWN(br->start,
+					DAMON_MIN_REGION);
+			last->ar.end = ALIGN(br->end, DAMON_MIN_REGION);
+		}
+	}
+}
+
+/*
+ * Update regions for current memory mappings
+ */
+void damon_va_update(struct damon_ctx *ctx)
+{
+	struct damon_addr_range three_regions[3];
+	struct damon_target *t;
+
+	damon_for_each_target(t, ctx) {
+		if (damon_va_three_regions(t, three_regions))
+			continue;
+		damon_va_apply_three_regions(t, three_regions);
+	}
+}
+
+/*
+ * Get an online page for a pfn if it's in the LRU list.  Otherwise, returns
+ * NULL.
+ *
+ * The body of this function is stolen from the 'page_idle_get_page()'.  We
+ * steal rather than reuse it because the code is quite simple.
+ */
+static struct page *damon_get_page(unsigned long pfn)
+{
+	struct page *page = pfn_to_online_page(pfn);
+
+	if (!page || !PageLRU(page) || !get_page_unless_zero(page))
+		return NULL;
+
+	if (unlikely(!PageLRU(page))) {
+		put_page(page);
+		page = NULL;
+	}
+	return page;
+}
+
+static void damon_ptep_mkold(pte_t *pte, struct mm_struct *mm,
+			     unsigned long addr)
+{
+	bool referenced = false;
+	struct page *page = damon_get_page(pte_pfn(*pte));
+
+	if (!page)
+		return;
+
+	if (pte_young(*pte)) {
+		referenced = true;
+		*pte = pte_mkold(*pte);
+	}
+
+#ifdef CONFIG_MMU_NOTIFIER
+	if (mmu_notifier_clear_young(mm, addr, addr + PAGE_SIZE))
+		referenced = true;
+#endif /* CONFIG_MMU_NOTIFIER */
+
+	if (referenced)
+		set_page_young(page);
+
+	set_page_idle(page);
+	put_page(page);
+}
+
+static void damon_pmdp_mkold(pmd_t *pmd, struct mm_struct *mm,
+			     unsigned long addr)
+{
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+	bool referenced = false;
+	struct page *page = damon_get_page(pmd_pfn(*pmd));
+
+	if (!page)
+		return;
+
+	if (pmd_young(*pmd)) {
+		referenced = true;
+		*pmd = pmd_mkold(*pmd);
+	}
+
+#ifdef CONFIG_MMU_NOTIFIER
+	if (mmu_notifier_clear_young(mm, addr,
+				addr + ((1UL) << HPAGE_PMD_SHIFT)))
+		referenced = true;
+#endif /* CONFIG_MMU_NOTIFIER */
+
+	if (referenced)
+		set_page_young(page);
+
+	set_page_idle(page);
+	put_page(page);
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+}
+
+static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
+		unsigned long next, struct mm_walk *walk)
+{
+	pte_t *pte;
+	spinlock_t *ptl;
+
+	if (pmd_huge(*pmd)) {
+		ptl = pmd_lock(walk->mm, pmd);
+		if (pmd_huge(*pmd)) {
+			damon_pmdp_mkold(pmd, walk->mm, addr);
+			spin_unlock(ptl);
+			return 0;
+		}
+		spin_unlock(ptl);
+	}
+
+	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
+		return 0;
+	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
+	if (!pte_present(*pte))
+		goto out;
+	damon_ptep_mkold(pte, walk->mm, addr);
+out:
+	pte_unmap_unlock(pte, ptl);
+	return 0;
+}
+
+static struct mm_walk_ops damon_mkold_ops = {
+	.pmd_entry = damon_mkold_pmd_entry,
+};
+
+static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
+{
+	mmap_read_lock(mm);
+	walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
+	mmap_read_unlock(mm);
+}
+
+/*
+ * Functions for the access checking of the regions
+ */
+
+static void damon_va_prepare_access_check(struct damon_ctx *ctx,
+			struct mm_struct *mm, struct damon_region *r)
+{
+	r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
+
+	damon_va_mkold(mm, r->sampling_addr);
+}
+
+void damon_va_prepare_access_checks(struct damon_ctx *ctx)
+{
+	struct damon_target *t;
+	struct mm_struct *mm;
+	struct damon_region *r;
+
+	damon_for_each_target(t, ctx) {
+		mm = damon_get_mm(t);
+		if (!mm)
+			continue;
+		damon_for_each_region(r, t)
+			damon_va_prepare_access_check(ctx, mm, r);
+		mmput(mm);
+	}
+}
+
+struct damon_young_walk_private {
+	unsigned long *page_sz;
+	bool young;
+};
+
+static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
+		unsigned long next, struct mm_walk *walk)
+{
+	pte_t *pte;
+	spinlock_t *ptl;
+	struct page *page;
+	struct damon_young_walk_private *priv = walk->private;
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+	if (pmd_huge(*pmd)) {
+		ptl = pmd_lock(walk->mm, pmd);
+		if (!pmd_huge(*pmd)) {
+			spin_unlock(ptl);
+			goto regular_page;
+		}
+		page = damon_get_page(pmd_pfn(*pmd));
+		if (!page)
+			goto huge_out;
+		if (pmd_young(*pmd) || !page_is_idle(page) ||
+					mmu_notifier_test_young(walk->mm,
+						addr)) {
+			*priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT);
+			priv->young = true;
+		}
+		put_page(page);
+huge_out:
+		spin_unlock(ptl);
+		return 0;
+	}
+
+regular_page:
+#endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
+
+	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
+		return -EINVAL;
+	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
+	if (!pte_present(*pte))
+		goto out;
+	page = damon_get_page(pte_pfn(*pte));
+	if (!page)
+		goto out;
+	if (pte_young(*pte) || !page_is_idle(page) ||
+			mmu_notifier_test_young(walk->mm, addr)) {
+		*priv->page_sz = PAGE_SIZE;
+		priv->young = true;
+	}
+	put_page(page);
+out:
+	pte_unmap_unlock(pte, ptl);
+	return 0;
+}
+
+static struct mm_walk_ops damon_young_ops = {
+	.pmd_entry = damon_young_pmd_entry,
+};
+
+static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
+		unsigned long *page_sz)
+{
+	struct damon_young_walk_private arg = {
+		.page_sz = page_sz,
+		.young = false,
+	};
+
+	mmap_read_lock(mm);
+	walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
+	mmap_read_unlock(mm);
+	return arg.young;
+}
+
+/*
+ * Check whether the region was accessed after the last preparation
+ *
+ * mm	'mm_struct' for the given virtual address space
+ * r	the region to be checked
+ */
+static void damon_va_check_access(struct damon_ctx *ctx,
+			       struct mm_struct *mm, struct damon_region *r)
+{
+	static struct mm_struct *last_mm;
+	static unsigned long last_addr;
+	static unsigned long last_page_sz = PAGE_SIZE;
+	static bool last_accessed;
+
+	/* If the region is in the last checked page, reuse the result */
+	if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
+				ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
+		if (last_accessed)
+			r->nr_accesses++;
+		return;
+	}
+
+	last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
+	if (last_accessed)
+		r->nr_accesses++;
+
+	last_mm = mm;
+	last_addr = r->sampling_addr;
+}
+
+unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
+{
+	struct damon_target *t;
+	struct mm_struct *mm;
+	struct damon_region *r;
+	unsigned int max_nr_accesses = 0;
+
+	damon_for_each_target(t, ctx) {
+		mm = damon_get_mm(t);
+		if (!mm)
+			continue;
+		damon_for_each_region(r, t) {
+			damon_va_check_access(ctx, mm, r);
+			max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
+		}
+		mmput(mm);
+	}
+
+	return max_nr_accesses;
+}
+
+/*
+ * Functions for the target validity check and cleanup
+ */
+
+bool damon_va_target_valid(void *target)
+{
+	struct damon_target *t = target;
+	struct task_struct *task;
+
+	task = damon_get_task_struct(t);
+	if (task) {
+		put_task_struct(task);
+		return true;
+	}
+
+	return false;
+}
+
+void damon_va_set_primitives(struct damon_ctx *ctx)
+{
+	ctx->primitive.init = damon_va_init;
+	ctx->primitive.update = damon_va_update;
+	ctx->primitive.prepare_access_checks = damon_va_prepare_access_checks;
+	ctx->primitive.check_accesses = damon_va_check_accesses;
+	ctx->primitive.reset_aggregated = NULL;
+	ctx->primitive.target_valid = damon_va_target_valid;
+	ctx->primitive.cleanup = NULL;
+}